Dependence of Shaft Stiffness on the Crack Location

نویسندگان

  • H. M. Mobarak
  • Helen Wu
  • Chunhui Yang
چکیده

In this study, an analytical model is developed to study crack breathing behavior under the effect of crack location and unbalance force. Crack breathing behavior is determined using effectual bending angle by studying the transient change in closed area of the crack. The status of the crack of a balanced shaft is symmetrical about shaft rotational angle and the duration of each crack status remains unchanged. The global stiffness of the balanced shaft is independent of crack location. Different crack breathing behavior for the unbalanced shaft has been observed. The influence of crack location on the unbalanced shaft stiffness can be divided into three regions. When the crack is located between 0.3L and 0.8335L, where L is the total length of the shaft, the unbalanced shaft is less stiff and when located outside this region it is stiffer than the balanced shaft. It was also found that unbalanced shaft stiffness has a maximum value with a crack at 0.1946L, a minimum value at 0.8053L and same value as balanced shaft at 0.3L and 0.8335L. Keywords—Cracked shaft, crack location, shaft stiffness, unbalanced force.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Damping and Stiffness of Bearing on the Natural Frequencies of Rotor-bearing System

In this paper, the effectiveness of stiffness and damping of bearing is investigated on the natural frequencies of the rotor-bearing system. The rotor-bearing system consists of a shaft, two bearings and a disk between two bearings. Parallel spring-damper in horizental and vertical directions is considered for modeling the stiffness and damping of bearings. The gyroscopic effect is also conside...

متن کامل

تعیین تئوری - تجربی پارامترهای ترک غیرخطی در تیر ترک‌دار تحت ارتعاشات غیرخطی کم‌ دامنه

In the vibration of a cracked structure with small amplitude oscillations, the crack necessarily is not fully open or fully closed. Therefore, in order to provide a realistic model for the crack, one should relate the stiffness and damping at the crack location to the amount of the opening of the crack. In this study, a continuous model for vibration of a beam with a fatigue crack under low amp...

متن کامل

Torsional Dynamic Response of a Shaft With Longitudinal and Circumferential Cracks

Turbo generator shafts are often subjected to cyclic torsion resulting in formation of large longitudinal cracks as well as circumferential cracks. The presence of these cracks could greatly impact the shaft resonance frequencies. In this paper, dynamic response of a shaft with longitudinal and circumferential cracks is investigated through a comprehensive analytical study. The longitudinally c...

متن کامل

Study of the Effect of an Open Transverse Crack on the Vibratory Behavior of Rotors Using the h-p Version of the Finite Element Method

In this paper, we use the hybrid h-p version of the finite element method to study the effect of an open transverse crack on the vibratory behavior of rotors, the one-dimensional finite element Euler-Bernoulli beam is used for modeling the rotor, the shape functions used are the Hermite cubic functions coupled to the special Legendre polynomials of Rodrigues. The global matrices of the equation...

متن کامل

Nonlinear Dynamics Analysis of a Gear-Shaft-Bearing System with Breathing Crack and Tooth Wear Faults

Considering backlash, time-varying mesh stiffness and radial clearance of bearing, nonlinear dynamic model of gear bearing flexible shaft system is established taking into account breathing crack in shaft and tooth wear. Nonlinear dynamic equations are solved by Runge-Kutta method. Effect of backlash, crack in shaft and tooth wear faults on the nonlinear dynamic behavior of gear-shaft-bearing s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017